Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint

نویسندگان

  • Shuowen Zhang
  • Yong Zeng
  • Rui Zhang
چکیده

In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which it needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity of UAV-Enabled Multicast Channel: Joint Trajectory Design and Power Allocation

This paper studies an unmanned aerial vehicle (UAV)-enabled multicast channel, in which a UAV serves as a mobile transmitter to deliver common information to a set of K ground users. We aim to characterize the capacity of this channel over a finite UAV communication period, subject to its maximum speed constraint and an average transmit power constraint. To achieve the capacity, the UAV should ...

متن کامل

Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks

This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to t...

متن کامل

UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization

This paper studies a new unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) system, where a UAV-mounted mobile energy transmitter (ET) is dispatched to deliver wireless energy to a set of energy receivers (ERs) at known locations on the ground. We investigate how the UAV should optimally exploit its mobility via trajectory design to maximize the amount of energy transferred to ...

متن کامل

Mobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory Optimization

This paper studies a new mobile edge computing (MEC) setup where an unmanned aerial vehicle (UAV) is served by cellular ground base stations (GBSs) for computation offloading. The UAV flies between a give pair of initial and final locations, during which it needs to accomplish certain computation tasks by offloading them to some selected GBSs along its trajectory for parallel execution. Under t...

متن کامل

Throughput Maximization for Laser-Powered UAV Wireless Communication Systems

Laser power has become a viable solution to provide convenient and sustainable energy supply to unmanned aerial vehicles (UAVs). In this paper, we study a laser-powered UAV wireless communication system, where a laser transmitter sends laser beams to charge a fixed-wing UAV in flight, and the UAV uses the harvested laser energy to communicate with a ground station. To maintain the UAV’s sustain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11619  شماره 

صفحات  -

تاریخ انتشار 2017